The K box, a conserved 3' UTR sequence motif, negatively regulates accumulation of enhancer of split complex transcripts.

نویسندگان

  • E C Lai
  • C Burks
  • J W Posakony
چکیده

Cell-cell interactions mediated by the Notch receptor play an essential role in the development of the Drosophila adult peripheral nervous system (PNS). Transcriptional activation of multiple genes of the Enhancer of split Complex [E(spl)-C] is a key intracellular response to Notch receptor activity. Here we report that most E(spl)-C genes contain a novel sequence motif, the K box (TGTGAT), in their 3' untranslated regions (3' UTRs). We present three lines of evidence that demonstrate the importance of this element in the post-transcriptional regulation of E(spl)-C genes. First, K box sequences are specifically conserved in the orthologs of two structurally distinct E(spl)-C genes (m4 and m8) from a distantly related Drosophila species. Second, the wild-type m8 3' UTR strongly reduces accumulation of heterologous transcripts in vivo, an activity that requires its K box sequences. Finally, m8 genomic DNA transgenes lacking these motifs cause mild gain-of-function PNS defects and can partially phenocopy the genetic interaction of E(spl)D with Notchspl. Although E(spl)-C genes are expressed in temporally and spatially specific patterns, we find that K box-mediated regulation is ubiquitous, implying that other targets of this activity may exist. In support of this, we present sequence analyses that implicate genes of the iroquois Complex (Iro-C) and engrailed as additional targets of K box-mediated regulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Bearded box, a novel 3' UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split Complex gene expression.

During the development of the Drosophila adult peripheral nervous system (PNS), inhibitory cell-cell interactions mediated by the Notch receptor are essential for proper specification of sensory organ cell fates. We have reported previously (M. W. Leviten, E. C. Lai and J. W. Posakony (1997) Development 124, 4039-4051) that the 3' untranslated regions (UTRs) of many genes involved in Notch sign...

متن کامل

The Drosophila gene Bearded encodes a novel small protein and shares 3' UTR sequence motifs with multiple Enhancer of split complex genes.

Gain-of-function alleles of the Drosophila gene Bearded (Brd) cause sensory organ multiplication and loss phenotypes indistinguishable at the cellular level from those caused by loss-of-function mutations in the genes of the Notch pathway (Leviten, M. W. and Posakony, J. W. (1996). Dev. Biol. 176, 264-283). We have carried out a molecular analysis of the structure and expression of both wild-ty...

متن کامل

Identifying signatures of selection at the enhancer of split neurogenic gene complex in Drosophila.

The Enhancer of split gene complex (E(spl)-C) is one of the more highly annotated gene regions in Drosophila, and the 12 genes within the complex help determine the spacing and patterning of adult bristles. Any E(spl)-C coding, transcribed, or cis-regulatory regions experiencing nonneutral evolution are strong candidates to harbor polymorphisms contributing to naturally occurring variation in b...

متن کامل

Cloning and molecular characterization of TaERF6, a gene encoding a bread wheat ethylene response factor

Ethylene response factor proteins are important for regulating gene expression under different stresses. Different isoforms for ERF have previously isolated from bread wheat (Triticum aestivum L.) and related genera and called from TaERF1 to TaERF5. We isolated, cloned and molecular characterized a novel one based on TdERF1, an isoform in durum wheat (Tri...

متن کامل

Post-transcriptional regulation through the HO 3'-UTR by Mpt5, a yeast homolog of Pumilio and FBF.

Drosophila Pumilio (Pum) and Caenorhabditis elegans FBF bind to the 3'-untranslated region (3'-UTR) of their target mRNAs and repress translation. Pum and FBF are members of a large and evolutionarily conserved protein family, the Puf family, found in Drosophila, C.elegans, humans, and yeasts. Budding yeast, Saccharomyces cerevisiae, has five proteins with conserved Puf motifs: Mpt5/Uth4, Ygl01...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 125 20  شماره 

صفحات  -

تاریخ انتشار 1998